题目内容
观察下列图案,既是中心对称图形又是轴对称图形的是( )
A. B. C. D.
如图,在平面直角坐标系中,圆M经过原点O,直线与x轴、y轴分别相交于A,B两点.
(1)求出A,B两点的坐标;
(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;
(3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.
如图,数轴上有O,A,B,C,D五点,根据各点所表示的数,表示数的点会落在( )
A. 点O和A之间 B. 点A和B之间 C. 点B和C之间 D. 点C和D之间
有两组卡片,第一组的三张卡片上分别写有数字3,4,5,第二组的三张卡片上分别写有数字1,3,5,现从每组卡片中各随机抽出一张,用抽取的第一组卡片的数字减去抽取的第二组卡片上的数字,差为正数的概率为__________
如图,点、、在直线上,点、、、在直线上,若,从如图所示的位置出发,沿直线向右匀速运动,直到与重合时停止运动.在运动过程中,与矩形()重合部分的面积随时间变化的图象大致是( )
为顺利通过“文明城市”验收,盐城市政府拟对部分地区进行改造,根据市政建设需要,须在16天之内完成工程.现有甲、乙两个工程队,经调查知道:乙队单独完成此工程的时间是甲队单独完成此工程时间的2倍,若甲、乙两队合作只需12天完成.
(1)求甲、乙工程队单独完成这项工程各需要多少天?
(2)两队合作完成此项工程,若甲队参与施工a天,乙队参与施工b天,试用含a的代数式表示b;
(3)若甲队每天的工程费用是0.6万元, 乙队每天的工程费用是0.25万元,请你设计一种方案,既能按时完工,又能使工程费最少?
(1)计算:
(2)解方程:
在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.
(1)如图①,当点H与点C重合时,可得FG FD.(大小关系)
(2)如图②,当点H为边CD上任意一点时,猜想FG与FD的数量关系,并说明理由.
(3)在图②中,当AB=8,BE=3时,利用探究的结论,求CF的长.
某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到设计方案有等腰三角形、正三角形、平行四边形、菱形等四种图案,你认为符合条件的是( ).
A. 等腰三角形 B. 正三角形 C. 平行四边形 D. 菱形