题目内容
【题目】某厂按用户的月需求量
(件)完成一种产品的生产,其中
.每件的售价为18万元,每件的成本
(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量
(件)成反比.经市场调研发现,月需求量
与月份
(
为整数,
)符合关系式
(
为常数),且得到了表中的数据.
月份 | 1 | 2 |
成本 | 11 | 12 |
需求量 | 120 | 100 |
(1)求
与
满足的关系式,请说明一件产品的利润能否是12万元;
(2)求
,并推断是否存在某个月既无盈利也不亏损;
(3)在这一年12个月中,若第
个月和第
个月的利润相差最大,求
.
【答案】(1)
,不可能;(2)不存在;(3)1或11.
【解析】
试题分析:(1)根据每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,结合表格,用待定系数法求y与x之间的函数关系式,再列方程求解,检验所得结果是还符合题意;(2)将表格中的n,对应的x值,代入到
,求出k,根据某个月既无盈利也不亏损,得到一个关于n的一元二次方程,判断根的情况;(3)用含m的代数式表示出第m个月,第(m+1)个月的利润,再对它们的差的情况讨论.
试题解析:(1)由题意设
,由表中数据,得
解得
∴
.
由题意,若
,则
.
∵x>0,∴
.
∴不可能.
(2)将n=1,x=120代入
,得
120=2-2k+9k+27.解得k=13.
将n=2,x=100代入
也符合.
∴k=13.
由题意,得18=6+
,求得x=50.
∴50=
,即
.
∵
,∴方程无实数根.
∴不存在.
(3)第m个月的利润为w=
=
;
∴第(m+1)个月的利润为
W′=
.
若W≥W′,W-W′=48(6-m),m取最小1,W-W′=240最大.
若W<W′,W′-W=48(m-6),m+1≤12,m取最大11,W′-W=240最大.
∴m=1或11.