题目内容
解方程:x2﹣4x+3=0.
如图的两个圆盘中均有5个数字,同时旋转两个圆盘,指针落在某一个数上的机会均等,那么两个指针同时落在奇数上的概率是( )
A. B. C. D.
如图是一个几何体的三视图,则这个几何体是( )
已知二次函数y=ax2-bx-2(a≠0)的图象的顶点在第四象限,且过点(-1,0),则a的取值范围为( )
A. a>0 B. a<2 C. 0<a<2 D. a<0
已知平行四边形ABCD的两边AB、BC的长是关于x的方程x2-mx+-=0的两个实数根.
(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;
(2)若AB的长为2,那么平行四边形ABCD的周长是多少?
如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是( )
A. (2,10) B. (﹣2,0)
C. (2,10)或(﹣2,0) D. (10,2)或(﹣2,0)
用配方法解方程x2﹣2x﹣1=0,原方程应变形为( )
A. (x﹣1)2=2 B. (x+1)2=2 C. (x﹣1)2=1 D. (x+1)2=1
某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.
(1)求转动一次转盘获得购物券的概率;
(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?
计算:25×-(-25)×+25×(-).