题目内容
下列各式中,最简二次根式是( )
A. B. C. D.
定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.
性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.
理【解析】如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.
应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.
(1)求证:△AOB和△AOE是“友好三角形”;
(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.
探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.
如图,给出了过直线AB外一点P,作已知直线AB的平行线的方法,其依据是( )
A. 同位角相等,两直线平行
B. 内错角相等,两直线平行
C. 同旁内角互补,两直线品行
D. 过直线外一点有且只有一条直线与这条直线平行
若,则= .
方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则( )
A. m=±2 B. m=2 C. m=﹣2 D. m≠±2
把一张矩形纸片ABCD按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.
(1)求证:△BHE≌△DGF;
(2)若AB=6cm,BC=8cm,求线段FG的长.
如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为_______.
如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2.
(1)求线段EC的长;
(2)求图中阴影部分的面积.
若时,则代数式的值为( )
A. 17 B. 11 C. D. 10