题目内容
(1)用计算器求图中∠A的正弦值、余弦值、正切值.
(2)已知sin A=0.328 6,tan B=10.08,利用计算器求锐角A,B.(结果精确到0.01°)
已知P点到圆上各点的距离中最短距离为1cm,最长距离为5cm,则⊙O的半径为________cm.
将正方形CGEF绕点C旋转任意角度后(如图24-3-7),其他条件不变.探究:线段MD、MF的关系,并加以证明.
如图,已知∠ABC和射线BD上一点P(点P与点B不重合,且点P到BA,BC的距离分别为PE,PF).
(1)若∠EBP=40°,∠FBP=20°,试比较PE,PF的大小;
(2)若∠EBP=α,∠FBP=β,α,β都是锐角,且α>β,请判断PE,PF的大小,并给出证明.
用计算器求sin 35°29'的值.(结果精确到0.001)
根据图中的信息,经过估算,下列数值与tan α的值最接近的是( )
A. 0.3640 B. 0.8970
C. 0.4590 D. 2.1785
对于同一平面内的三条直线a,b,c,给出下列5个判断:①a∥b②b∥c;③a⊥b;④a∥c;⑤a⊥c.请以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题(至少写两个命题).
有一个三角形的两边长是3和5,要使这个三角形成为直角三角形,则第三边边长的平方是________。
抛物线y=2x2-3x-5的顶点坐标为______.当x=______时,y有最______值是______,与x轴的交点是______,与y轴的交点是______,当x______时,y随x增大而减小,当x______时,y随x增大而增大.