题目内容

先阅读下面材料,然后解答问题:

  材料一:如图(1),直线l上有A1、A2两个点,若在直线l上要确定一点P,且使点P到点A1、A2的距离之和最小,很明显点P的位置可取在A1和A2之间的任何地方,此时距离之和为A1到A2的距离.

  如图(2),直线l上依次有A1、A2、A3三个点,若在直线l上要确定一点P,且使点P到点A1、A2、A3的距离之和最小,不难判断,点P的位置应取在点A2处,此时距离之和为A1到A3的距离.(想一想,这是为什么)

  不难知道,如果直线l上依次有A1、A2、A3、A4四个点,同样要确定一点P,使它到各点的距离之和最小,则点P应取在点A2和A3之间的任何地方;如果直线l上依次有A1、A2、A3、A4、A5五个点,则相应点P的位置应取在点A3的位置.

  材料二:数轴上任意两点a、b之间的距离可以表示为|a﹣b|.

问题一:若已知直线l上依次有点A1,A2,A3,…,A25共25个点,要确定一点P,使它到已知各点的距离之和最小,则点P的位置应取在________;

若已知直线l上依次有点A1,A2,A3,…,A50共50个点,要确定一点P,使它到已知各点的距离之和最小,则点P的位置应取在________.

问题二:现要求|x+1|+|x|+|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣97|的最小值,

根据问题一的解答思路,可知当x值为________时,上式有最小值为________.

答案:
解析:

  解:问题一:点A13处;点A25和A26之间的任何地方;

  问题二:因为|x+1|+|x|+|x-1|+|x-2|+|x-3|+…+|x-97|=|x-(-1)|+|x-0|+|x-1|+|x-2|+

  |x-3|+…+|x-97|,

  此题相当于数轴上x到点-1,0,1,…,97的距离和.

  所以当x=48时,有最小值为2450.

  故答案为:48,2450.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网