题目内容

如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为            (取,结果精确到0.1海里).

考点:解直角三角形的应用-方向角问题.

专题:应用题.

分析:过点D作DE⊥AB于点E,设DE=x,在Rt△CDE中表示出CE,在Rt△BDE中表示出BE,再由CB=25海里,可得出关于x的方程,解出后即可计算AB的长度.

解答:解:∵∠DBA=∠DAB=45°,

∴△DAB是等腰直角三角形,

过点D作DE⊥AB于点E,则DE=AB,

设DE=x,则AB=2x,

在Rt△CDE中,∠DCE=30°,

则CE=DE=x,

在Rt△BDE中,∠DAE=45°,

则DE=BE=x,

由题意得,CB=CE﹣BE=x﹣x=25,

解得:x=

故AB=25(+1)=67.5海里.

故答案为:67.5.

点评:本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度,难度一般. 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网