题目内容
如图OA=OB=OC且∠ACB=30°,则∠AOB=
天水“伏羲文化节”商品交易会上,某商人将每件进价为8元的纪念品,按每件9元出售,每天可售出20件.他想采用提高售价的办法来增加利润,经实验,发现这种纪念品每件提价1元,每天的销售量会减少4件.
(1)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式.
(2)每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?
如图,点P在双曲线(x>0)上,⊙P与两坐标轴都相切,点E为y轴负半轴上的一点,过点P作PF⊥PE交x轴于点F,若OF OE=8,则k的值是 .
(本题14分)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴、y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点P作PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)
(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;
(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;
(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.
(本题8分)如图,一次函数 y=kx+b 的图象与反比例函数y=的图象交于 A(﹣2,1),B(1,n)两点.
(1)试确定上述反比例函数和一次函数的表达式;
(2)连OB,在x轴上取点C,使BC=BO,并求△OBC的面积.
若△ABC∽△DEF,∠B=50°,∠C=60°,则∠D的度数为_________.
如图,∠1的正切值等于( )
A.1:3 B.3 C.1: D.3:
如图,已知OC⊥AB,如果∠BOD=30°,则∠COD的度数为________。
(8分)完成下面证明:
(1)如图1,已知直线b∥c,a⊥c,求证:a⊥b
证明:∵a⊥c ( 已知 )
∴∠1= ( 垂直定义)
∵b∥c (已知 )
∴∠1=∠2 ( )
∴∠2=∠1=90° ( )
∴a⊥b ( )
(2)如图2:AB∥CD,∠B+∠D=180°,求证:CB∥DE
证明:∵AB∥CD (已知 )
∴∠B= ( )
∵∠B+∠D=180° (已知 )
∴∠C+∠D=180° ( )
∴CB∥DE ( )