题目内容
分析:连接AC,然后根据勾股定理求出AC的长度,再根据勾股定理逆定理计算出∠ACD=90°,然后根据四边形ABCD的面积=△ABC的面积+△ACD的面积,列式进行计算即可得解.
解答:
解:连接AC,∵∠ABC=90°,AB=3,BC=4,
∴AC=
=
=5,
∵DC=12,AD=13,
∴AC2+DC2=52+122=25+144=169,
AD2=132=169,
∴AC2+DC2=AD2,
∴△ACD是∠ACD=90°的直角三角形,
四边形ABCD的面积=△ABC的面积+△ACD的面积,
=
AB•BC+
AC•CD
=
×3×4+
×5×12
=6+30
=36.
故答案为:36.
∴AC=
| AB2+BC2 |
| 32+42 |
∵DC=12,AD=13,
∴AC2+DC2=52+122=25+144=169,
AD2=132=169,
∴AC2+DC2=AD2,
∴△ACD是∠ACD=90°的直角三角形,
四边形ABCD的面积=△ABC的面积+△ACD的面积,
=
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
=6+30
=36.
故答案为:36.
点评:本题考查了勾股定理,勾股定理逆定理,连接AC,构造出直角三角形是解题的关键.
练习册系列答案
相关题目