题目内容
如图,矩形ABCD中,AB=3,BC=5,过对角线交点O作OE⊥AC交 AD于点E,则AE的长是_____.
一次数学测验,100名学生中有25名得了优秀,则优秀人数的频率是 。
如图,△ABC的面积为1.分别倍长AB,BC,CA得到△A1B1C1.再分别倍长A1B1,B1C1,C1A1得到△A2B2C2.…按此规律,倍长n次后得到的△AnBnCn的面积为 .
如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.
(1)求证:△CBG≌△CDG;
(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;
(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.
计算或化简
(1) 计算:
(2)
当x= 时,分式的值是0。
下列事件中,是随机事件的为( )
A.水涨船高 B.守株待兔 C.水中捞月 D.冬去春来
下列事件:①两直线平行,内错角相等;②掷一枚硬币,国徽的一面朝上,其中,随机事件是______.(填序号)
如图,△ABC中,∠C=900,AC=8cm,BC=6cm,,AB=10cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒.
(1)当t为何值时,CP把△ABC的周长分成相等的两部分?
(2)当t为何值时,CP把△ABC的面积分成相等的两部分?
(3)当t为何值时,△BCP的面积为12?