题目内容
四边形ABCD中,∠ABC=135°,∠BCD=120°,AB=
,BC=
,CD=6,则AD=________.
分析:作AE⊥BC,DE⊥BC,AG⊥DF,则四边形AEFG为矩形,AE=FG.EF=AG,因为△ADG为直角三角形,所以AD=
解答:
则四边形AEFG四个内角均为直角,
∴四边形AEFG为矩形,AE=FG.EF=AG
∠ABE=180°-135°=45°,∠DCF=180°-120°=60°,
∴AE=EB=
∴AG=EF=8,DG=DF-AE=2
∴AD=
故答案为
点评:本题考查了矩形的判定和矩形对边相等的性质,考查了勾股定理在直角三角形中的运用,本题中构造矩形AEFG是解题的关键.
练习册系列答案
相关题目