题目内容

四边形ABCD中,∠ABC=135°,∠BCD=120°,AB=数学公式,BC=数学公式,CD=6,则AD=________.


分析:作AE⊥BC,DE⊥BC,AG⊥DF,则四边形AEFG为矩形,AE=FG.EF=AG,因为△ADG为直角三角形,所以AD=,根据直角△AEB和直角△CDF即可求AE,BE,CF,FD.
解答:解:作AE⊥BC,DF⊥BC,AG⊥DF,
则四边形AEFG四个内角均为直角,
∴四边形AEFG为矩形,AE=FG.EF=AG
∠ABE=180°-135°=45°,∠DCF=180°-120°=60°,
∴AE=EB=×=,CF=×CD=3,FD=CF=3
∴AG=EF=8,DG=DF-AE=2
∴AD==
故答案为
点评:本题考查了矩形的判定和矩形对边相等的性质,考查了勾股定理在直角三角形中的运用,本题中构造矩形AEFG是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网