题目内容
求下列函数的图象的对称轴、顶点坐标及与x轴的交点坐标.
(1)y=4x2+24x+35;
(2)y=-3x2+6x+2;
(3)y=x2-x+3;
(4)y=2x2+12x+18.
2017年我省粮食总产量为635.2亿斤,其中635.2亿科学记数法表示( )
A. B. C. D.
如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…An分别是正方形的中心,则这n个正方形重叠部分的面积之和是( )
A. n B. n﹣1 C. ()n﹣1 D. ()n
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下说法不正确的是( )
A. 根据图象可得该函数y有最小值
B. 当x=?2时,函数y的值小于0
C. 根据图象可得a>0,b<0
D. 当x<?1时,函数值y随着x的增大而减小
如图,二次函数y1=ax2+bx+c与一次函数y2=kx的图象交于点A和原点O,点A的横坐标为-4,点A和点B关于抛物线的对称轴对称,点B的横坐标为1,则满足0<y1<y2的x的取值范围是____.
⑴ 阅读理解
问题1:已知a、b、c、d为正数,,ac=bd,试说明a=d,b=c.
我们通过构造几何模型解决代数问题. 注意到条件,如果把a、b、c、d分别看作为两个直角三角形的直角边,那么可构造图1所示的几何模型.
∵ac=bd,
∴AB·CD=BC·AD
∴
请你按照以上思路继续完成说明.
⑵ 深入探究
问题2:若a>0,b>0,试比较和的大小.
为此我们构造图2所示的几何模型,其中AB为直径, O为圆心,点C在半圆上,CD⊥AB 于D,AD=a,BD=b.
请你利用图2所示的几何模型解决提出的问题2.
⑶ 拓展运用
对于函数y=x+,求当x>0时,求y的取值范围.
先化简,再求值:(2m-1)2-(4m+1)(m-2),其中m=-.
下列计算正确的是( )
A. B. C. 2x+y=2xxy D.
关于x的方程(m2-1)x2+(m-1)x+2m-1=0是一元二次方程的条件是____________.