题目内容

如图,在△ABC中,D、E分别是边AB、AC的中点,F为CA延长线上一点,∠F=∠C.
(1)若BC=8,求FD的长;
(2)若AB=AC,求证:△ADE∽△DFE.

解:(1)∵D、E分别是边AB、AC的中点,
,DE∥BC.
∴∠AED=∠C.
∵∠F=∠C,
∴∠AED=∠F,
∴FD==4;

(2)∵AB=AC,DE∥BC.
∴∠B=∠C=∠AED=∠ADE,
∵∠AED=∠F,
∴∠ADE=∠F,
又∵∠AED=∠AED,
∴△ADE∽△DFE.
分析:(1)利用三角形中位线的性质得出DE∥BC,进而得出∠AED=∠F,即可得出FD=DE,即可得出答案;
(2)利用等腰三角形的性质和平行线的性质得出∠B=∠C=∠AED=∠ADE,即可得出∠ADE=∠F,即可得出△ADE∽△DFE.
点评:此题主要考查了相似三角形的判定与性质以及等腰三角形的性质和平行线的性质等知识,熟练利用相关性质是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网