题目内容
已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.求证:对任意实数m,方程总有2个不相等的实数根.
如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为_____.
矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.
若,则的值是( )
A. B. C. D.
如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.
(1)求此抛物线的解析式;
(2)求C、D两点坐标及△BCD的面积;
(3)若点P在x轴上方的抛物线上,满足S△PCD=S△BCD,求点P的坐标.
有一个两位数,它的十位上的数字比个位上的数字小2,十位上的数字与个位上的数字的积的3倍刚好等于这个两位数,则这个两位数是________.
抛物线y=(x+3)2-4向左平移1个单位,再向下平移2个单位后所得抛物线的表达式为( )
A. y=(x+4)2-6 B. y=(x+2)2-6 C. y=(x+6)2-2 D. y=(x+2)2-2
设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2﹣2mn+n2=_____.
若两条抛物线的顶点相同,则称它们为“友好抛物线”,
抛物线C1:y1=﹣2x2+4x+2与C2:y2=﹣x2+mx+n为“友好抛物线”.
(1)求抛物线C2的解析式.
(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ的最大值.
(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.