题目内容
数学课上,张老师给出了问题:如图(1),四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角∠DCG的平分线CF 于点F,求证:AE=EF。
经过思考,小明展示了一种正确的解题思路:取AB 的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF,在此基础上,同学们作了进一步探究:
(1)小颖提出:如图(2),如果把“点E是边BC的中点” 改为“点E是边BC上(除B、C外)的任意一点”,其他条件不变,那么结论“AE= EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图(3),点E是BC的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF” 仍然成立,你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由。
经过思考,小明展示了一种正确的解题思路:取AB 的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF,在此基础上,同学们作了进一步探究:
(1)小颖提出:如图(2),如果把“点E是边BC的中点” 改为“点E是边BC上(除B、C外)的任意一点”,其他条件不变,那么结论“AE= EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图(3),点E是BC的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF” 仍然成立,你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由。
| 解:(1)正确, 证明:如图(1),在AB上取一点M,使AM=EC,连接ME, ∴BM=BE, ∴∠BME=45°, ∴∠AME=135°, ∵CF是正方形外角∠DCG的平分线, ∴∠DCF=45°, ∴∠BCF=135°, ∴∠AME=∠ECF, ∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°, ∴∠BAE=∠CEF, ∴△AME≌△ECF(ASA), ∴AE=EF; |
|
| (2)正确, 证明:如图(2), 在BA的延长线上取一点N,使AN=CE,连接NE, ∴BN=BE, ∴∠N=∠FCE=45°, ∵四边形ABCD是正方形, ∴AD∥BE, ∴∠DAE=∠BEA, ∴∠NAE=∠CEF, ∴△ANE≌△ECF(ASA), ∴AE=EF。 |
练习册系列答案
相关题目