题目内容
如图,在平行四边形ABCD中,E为AD的中点,△BCF的面积为4,则△DEF的面积为
- A.1
- B.2
- C.3
- D.4
A
分析:由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,即可证得△DEF∽△BCF,又由E为AD的中点,△BCF的面积为4,然后根据相似三角形面积的比等于相似比的平方,即可求得△DEF的面积.
解答:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴△DEF∽△BCF,
∵E为AD的中点,
∴DE=
AD,
∴DE:BC=1:2,
∴S△DEF:S△BCF=1:4,
∵△BCF的面积为4,
∴△DEF的面积为1.
故选A.
点评:此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.
分析:由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,即可证得△DEF∽△BCF,又由E为AD的中点,△BCF的面积为4,然后根据相似三角形面积的比等于相似比的平方,即可求得△DEF的面积.
解答:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴△DEF∽△BCF,
∵E为AD的中点,
∴DE=
∴DE:BC=1:2,
∴S△DEF:S△BCF=1:4,
∵△BCF的面积为4,
∴△DEF的面积为1.
故选A.
点评:此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关题目
| 2 |
| 3 |
| 5 |
| A、AC⊥BD |
| B、四边形ABCD是菱形 |
| C、△ABO≌△CBO |
| D、AC=BD |