题目内容

二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论
①a>0,②b>0,③c>0,④b2-4ac>0
其中正确的有


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
C
分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:解:①∵该二次函数图象的开口方向向下,
∴a<0;
故本选项错误;
②∵该图象的对称轴x=->0,
∴b>0;
故本选项正确;
③∵该函数图象与y轴交于正半轴,
∴c>0;
故本选项正确;
④该二次函数的图象与x轴有2个不相同的交点,依据根的判别式可知b2-4ac>0;
故本选项正确;
综上所述,正确的说法是:②③④,共有3个;
故选C.
点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网