题目内容
(2009•北京)在平行四边形ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图1)(1)在图1中画图探究:
①当P为射线CD上任意一点(P1不与C重合)时,连接EP1;绕点E逆时针旋转90°得到线段EG1.判断直线FG1与直线CD的位置关系,并加以证明;
②当P2为线段DC的延长线上任意一点时,连接EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2.判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论.
(2)若AD=6,tanB=
【答案】分析:(1)①直线FG1与直线CD的位置关系为互相垂直,理由为:△P1EC按要求旋转后得到的△G1EF全等,再结合∠P1CE=∠G1FE=90°去说明;②按题目要求所画图形见图1,直线G1G2与直线CD的位置关系为互相垂直;
(2)①当点P1在线段CH的延长线上时,结合已知说明CE=4,且由四边形FEHC是正方形,得CH=CE=4,再根据题设可得G1F=x.P1H=x-4,进而可得y与x之间的函数关系式;②当点P1在线段CH上时,同理可得FG1=x,P1H=4-x,进而可得y与x之间的函数关系式;③当点P1与点H重合时,说明△P1FG1不存在,再作综合说明即可.
解答:
解:(1)①直线FG1与直线CD的位置关系为互相垂直.
证明:如图1,设直线FG1与直线CD的交点为H.
∵线段EC、EP1分别绕点E逆时针旋转90°依次得到线段EF、EG1,
∴∠P1EG1=∠CEF=90°,EG1=EP1,EF=EC.
∵∠G1EF=90°-∠P1EF,∠P1EC=90°-∠P1EF,
∴∠G1EF=∠P1EC.
∴△G1EF≌△P1EC.
∴∠G1FE=∠P1CE.
∵EC⊥CD,
∴∠P1CE=90°,
∴∠G1FE=90度.
∴∠EFH=90度.
∴∠FHC=90度.
∴FG1⊥CD.
②按题目要求所画图形见图1,直线G1G2与直线CD的位置关系为互相垂直.
(2)∵四边形ABCD是平行四边形,
∴∠B=∠ADC.
∵AD=6,AE=1,tanB=
,
∴DE=5,tan∠EDC=tanB=
.
可得CE=4.
由(1)可得四边形EFHC为正方形.
∴CH=CE=4.
①如图2,当P1点在线段CH的延长线上时,
∵FG1=CP1=x,P1H=x-4,
∴S△P1FG1=
×FG1×P1H=
.
∴y=
x2-2x(x>4).
②如图3,当P1点在线段CH上(不与C、H两点重合)时,
∵FG1=CP1=x,P1H=4-x,
∴S△P1FG1=
×FG1×P1H=
.
∴y=-
x2+2x(0<x<4).
③当P1点与H点重合时,即x=4时,△P1FG1不存在.
综上所述,y与x之间的函数关系式及自变量x的取值范围是y=
x2-2x(x>4)或y=-
x2+2x(0<x<4).
点评:本题着重考查了二次函数解、图形旋转变换、三角形全等、探究垂直的构成情况等重要知识点,综合性强,能力要求较高.考查学生分类讨论,数形结合的数学思想方法.
(2)①当点P1在线段CH的延长线上时,结合已知说明CE=4,且由四边形FEHC是正方形,得CH=CE=4,再根据题设可得G1F=x.P1H=x-4,进而可得y与x之间的函数关系式;②当点P1在线段CH上时,同理可得FG1=x,P1H=4-x,进而可得y与x之间的函数关系式;③当点P1与点H重合时,说明△P1FG1不存在,再作综合说明即可.
解答:
证明:如图1,设直线FG1与直线CD的交点为H.
∵线段EC、EP1分别绕点E逆时针旋转90°依次得到线段EF、EG1,
∴∠P1EG1=∠CEF=90°,EG1=EP1,EF=EC.
∵∠G1EF=90°-∠P1EF,∠P1EC=90°-∠P1EF,
∴∠G1EF=∠P1EC.
∴△G1EF≌△P1EC.
∴∠G1FE=∠P1CE.
∵EC⊥CD,
∴∠P1CE=90°,
∴∠G1FE=90度.
∴∠EFH=90度.
∴∠FHC=90度.
∴FG1⊥CD.
②按题目要求所画图形见图1,直线G1G2与直线CD的位置关系为互相垂直.
(2)∵四边形ABCD是平行四边形,
∴∠B=∠ADC.
∵AD=6,AE=1,tanB=
∴DE=5,tan∠EDC=tanB=
可得CE=4.
由(1)可得四边形EFHC为正方形.
∴CH=CE=4.
①如图2,当P1点在线段CH的延长线上时,
∵FG1=CP1=x,P1H=x-4,
∴S△P1FG1=
∴y=
②如图3,当P1点在线段CH上(不与C、H两点重合)时,
∵FG1=CP1=x,P1H=4-x,
∴S△P1FG1=
∴y=-
③当P1点与H点重合时,即x=4时,△P1FG1不存在.
综上所述,y与x之间的函数关系式及自变量x的取值范围是y=
点评:本题着重考查了二次函数解、图形旋转变换、三角形全等、探究垂直的构成情况等重要知识点,综合性强,能力要求较高.考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关题目
(2009•北京)在每年年初召开的市人代会上,北京市财政局都要报告上一年度市财政预算执行情况和当年预算情况.以下是根据2004-2008年度报告中的有关数据制作的市财政教育预算与实际投入统计图表的一部分.
2004-2008年北京市财政教育实际投入与预算差值统计表(单位:亿元)

请根据以上信息解答下列问题:
(1)请在表1的空格内填入2004年市财政教育实际投入与预算的差值;
(2)求2004-2008年北京市财政教育实际投入与预算差值的平均数;
(3)已知2009年北京市财政教育预算是141.7亿元.在此基础上,如果2009年北京市财政教育实际投入按照(2)中求出的平均数增长,估计它的金额可能达到多少亿元?
2004-2008年北京市财政教育实际投入与预算差值统计表(单位:亿元)
| 年份 | 2004 | 2005 | 2006 | 2007 | 2008 |
| 教育实际投入与预算差值 | 6.7 | 5.7 | 14.6 | 7.3 |
请根据以上信息解答下列问题:
(1)请在表1的空格内填入2004年市财政教育实际投入与预算的差值;
(2)求2004-2008年北京市财政教育实际投入与预算差值的平均数;
(3)已知2009年北京市财政教育预算是141.7亿元.在此基础上,如果2009年北京市财政教育实际投入按照(2)中求出的平均数增长,估计它的金额可能达到多少亿元?
(2009•北京)在每年年初召开的市人代会上,北京市财政局都要报告上一年度市财政预算执行情况和当年预算情况.以下是根据2004-2008年度报告中的有关数据制作的市财政教育预算与实际投入统计图表的一部分.
2004-2008年北京市财政教育实际投入与预算差值统计表(单位:亿元)

请根据以上信息解答下列问题:
(1)请在表1的空格内填入2004年市财政教育实际投入与预算的差值;
(2)求2004-2008年北京市财政教育实际投入与预算差值的平均数;
(3)已知2009年北京市财政教育预算是141.7亿元.在此基础上,如果2009年北京市财政教育实际投入按照(2)中求出的平均数增长,估计它的金额可能达到多少亿元?
2004-2008年北京市财政教育实际投入与预算差值统计表(单位:亿元)
| 年份 | 2004 | 2005 | 2006 | 2007 | 2008 |
| 教育实际投入与预算差值 | 6.7 | 5.7 | 14.6 | 7.3 |
请根据以上信息解答下列问题:
(1)请在表1的空格内填入2004年市财政教育实际投入与预算的差值;
(2)求2004-2008年北京市财政教育实际投入与预算差值的平均数;
(3)已知2009年北京市财政教育预算是141.7亿元.在此基础上,如果2009年北京市财政教育实际投入按照(2)中求出的平均数增长,估计它的金额可能达到多少亿元?
(2009•北京)在每年年初召开的市人代会上,北京市财政局都要报告上一年度市财政预算执行情况和当年预算情况.以下是根据2004-2008年度报告中的有关数据制作的市财政教育预算与实际投入统计图表的一部分.
2004-2008年北京市财政教育实际投入与预算差值统计表(单位:亿元)

请根据以上信息解答下列问题:
(1)请在表1的空格内填入2004年市财政教育实际投入与预算的差值;
(2)求2004-2008年北京市财政教育实际投入与预算差值的平均数;
(3)已知2009年北京市财政教育预算是141.7亿元.在此基础上,如果2009年北京市财政教育实际投入按照(2)中求出的平均数增长,估计它的金额可能达到多少亿元?
2004-2008年北京市财政教育实际投入与预算差值统计表(单位:亿元)
| 年份 | 2004 | 2005 | 2006 | 2007 | 2008 |
| 教育实际投入与预算差值 | 6.7 | 5.7 | 14.6 | 7.3 |
请根据以上信息解答下列问题:
(1)请在表1的空格内填入2004年市财政教育实际投入与预算的差值;
(2)求2004-2008年北京市财政教育实际投入与预算差值的平均数;
(3)已知2009年北京市财政教育预算是141.7亿元.在此基础上,如果2009年北京市财政教育实际投入按照(2)中求出的平均数增长,估计它的金额可能达到多少亿元?