题目内容
分析:△ADE中,∠ADE=90°,DE是△ABC的中位线,则DE∥BC;如果过点E作EM⊥AC于M,则△AEM中有两个角与△ADE中的两个角分别对应相等,根据相似三角形的判定,可知两三角形相似.
解答:解:存在,过点E作AC的垂线,与AF交与一点,即为M点.
连接MC;
∵DE是△ABC的中位线,
∴DE∥BC,AE=EC.
∵ME⊥AC,
∴△AEM≌△CEM.
∴∠MAE=∠MCE.
∵∠B=90°,
∴∠DAM=90°.
∵AF∥BC,
∴AM∥DE.
∴∠MAE=∠AED.
∴∠AED=∠MCE.
∵∠ADE=∠MEC=90°,
∴△MEC∽△ADE.
连接MC;
∵DE是△ABC的中位线,
∴DE∥BC,AE=EC.
∵ME⊥AC,
∴△AEM≌△CEM.
∴∠MAE=∠MCE.
∵∠B=90°,
∴∠DAM=90°.
∵AF∥BC,
∴AM∥DE.
∴∠MAE=∠AED.
∴∠AED=∠MCE.
∵∠ADE=∠MEC=90°,
∴△MEC∽△ADE.
点评:本题主要考查相似三角形的判定、全等三角形的判定和性质等知识.综合性较强,难度适中.
练习册系列答案
相关题目
| A、7.5 | B、15 | C、30 | D、24 |
| A、1:2 | B、1:3 | C、1:4 | D、以上都不对 |
| A、6 | B、8 | C、10 | D、12 |