题目内容

如图,△ABC∽△A′B′C′,相似比为k,AD、A′D′分别是边BC、B′C′上的中线,求证:数学公式

证明:∵△ABC∽△A′B′C′,
===K.
又∵AD、A′D′分别是边BC、B′C′上的中线,
==
,∵∠B=∠B′,
∴△ABD∽△A′B′D′.

分析:根据相似三角形的性质,对应边成比例及中线的性质求解.
点评:本题实际上是相似三角形的性质的拓展,不但有对应中线等于相似比,对应边上的高,对应角的平分线也都等于相似.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网