题目内容
分式方程的解是 .
下列方程是一元二次方程的是( )
A.x2+=3 B.x2+x=y
C.(x﹣4)(x+2)=3 D.3x﹣2y=0
如图,正方形ABCD中,P为AB中点,BE⊥DP交DP延长线于E,连结AE,AF⊥AE交DP于F,连结BF,CF.下列结论:①EF=AF;②AB=FB;③CF∥BE;④EF=CF.其中正确的结论有( )个.
A.1 B.2 C.3 D.4
某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程.已知2013年投资1000万元,预计2015年投资1210万元.求这两年内平均每年投资增长的百分率.
如图,在四边形ABCD中,AD∥BC,AB=CD=2,BC=5,∠BAD的平分线交BC于点E,且AE∥CD,则四边形ABCD的面积为 .
在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为( )
A.40cm B.60cm C.80cm D.100cm
综合与实践:
发现问题:
如图①,已知:△OAB中,OB=3,将△OAB绕点O逆时针旋转90°得△OA′B,连接BB′.
则BB′= .
问题探究:
如图②,已知△ABC是边长为4的等边三角形,以BC为边向外作等边△BCD,P为△ABC内一点,将线段CP绕点C逆时针旋转60°,P的对应点为Q.
(1)求证:△DCQ≌△BCP
(2)求PA+PB+PC的最小值.
实际应用:
如图③,某货运场为一个矩形场地ABCD,其中AB=500米,AD=800米,顶点A、D为两个出口,现在想在货运广场内建一个货物堆放平台P,在BC边上(含B、C两点)开一个货物入口M,并修建三条专用车道PA、PD、PM.若修建每米专用车道的费用为10000元,当M,P建在何处时,修建专用车道的费用最少?最少费用为多少?
不等式组的整数解的和为( ).
A.8 B.7 C.6 D.5
如图,P为正方形ABCD内一点,且BP=2,PC=3,∠APB=135°,将△APB绕点B顺时针旋转90°得到△CP′B,连接PP′,则AP= .