题目内容
如图,已知AB为⊙O的弦,直径MN与AB相交于⊙O内,MC⊥AB于C,ND⊥AB于D,若MN=20,AB=8
,则MC-ND=______.

| 6 |
设AB、NM交于H,做OE⊥AB于E,连接OB,
∵MN是⊙O的直径,且MN=20,弦AB的长为8
,
∴AE=BE=4
,OE=
=2,
∵MC⊥AB于C,ND⊥AB于D,OE⊥AB于E,
∴MC∥OE∥DN
∴△OEH∽△MCH∽△NDH,
∴
=
,即
=
,
=
,即
=
,
∴
(MC-DN)=2
∴MC-DN=4.
故答案为4.

∵MN是⊙O的直径,且MN=20,弦AB的长为8
| 6 |
∴AE=BE=4
| 6 |
| OB2-BE2 |
∵MC⊥AB于C,ND⊥AB于D,OE⊥AB于E,
∴MC∥OE∥DN
∴△OEH∽△MCH∽△NDH,
∴
| MC |
| OE |
| MH |
| OH |
| MC |
| 2 |
| 10+OH |
| OH |
| DN |
| OE |
| NH |
| OH |
| DN |
| 2 |
| 10-OH |
| OH |
∴
| 1 |
| 2 |
∴MC-DN=4.
故答案为4.
练习册系列答案
相关题目