题目内容
(1)过点B在平行四边形内部作射线BF交AC于点F,且使∠CBF=∠ADE(要求:用尺规作图,保留作图痕迹,不写作法与证明)
(2)连接BE,DF,判断四边形BFDE的形状并证明.
分析:(1)作∠CBM=∠ADE,其中BM交CD于F即可;
(2)四边形BFDE的形状是平行四边形,连BE、DF,由于△ADE≌△CBF,根据全等三角形的性质得到DE=BF,∠AED=∠BFC,根据等角的补角相等可得∠DEF=∠BFE,则DE∥BF,根据平行四边形的判定即可得到结论.
(2)四边形BFDE的形状是平行四边形,连BE、DF,由于△ADE≌△CBF,根据全等三角形的性质得到DE=BF,∠AED=∠BFC,根据等角的补角相等可得∠DEF=∠BFE,则DE∥BF,根据平行四边形的判定即可得到结论.
解答:解:(1)
如图所示:
(2)四边形BFDE的形状是平行四边形,
理由如下:
∵在平行四边形ABCD中,∴∠A=∠C,AD=BC,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(ASA),
∴DE=BF,∠AED=∠BFC,
∵∠DEF=180°-∠AED,∠BFE=180°-∠BFC,
∴∠DEF=∠BFE,
∴DE∥BF,
∴四边形DEBF是平行四边形.
(2)四边形BFDE的形状是平行四边形,
理由如下:
∵在平行四边形ABCD中,∴∠A=∠C,AD=BC,
在△ADE和△CBF中,
|
∴△ADE≌△CBF(ASA),
∴DE=BF,∠AED=∠BFC,
∵∠DEF=180°-∠AED,∠BFE=180°-∠BFC,
∴∠DEF=∠BFE,
∴DE∥BF,
∴四边形DEBF是平行四边形.
点评:综合考查了角的作图,平行四边形的性质和全等三角形的判定的知识,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
练习册系列答案
相关题目