题目内容
已知x-2y=3,x2-2xy+4y2=11.求下列各式的值:
(1)xy;(2)x2y-2xy2.
如图,?ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为( )
A. BE=DF B. BF=DE C. AE=CF D. ∠1=∠2
如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于
A. B. C. D.
不等式2x-1≥5的最小整数解为__________.
观察下列各式:
12+(1×2)2+22=9=32,
22+(2×3)2+32=49=72,
32+(3×4)2+42=169=132,….
你发现了什么规律?请用含有字母n(n为正整数)的等式表示出来,并说明理由.
当m为何值时,关于x的方程无解?
使分式的值为0的值是___________.
已知点P是矩形ABCD边AB上的任意一点(与点A、B不重合)
(1)如图①,现将△PBC沿PC翻折得到△PEC;再在AD上取一点F,将△PAF沿PF翻折得到△PGF,并使得射线PE、PG重合,试问FG与CE的位置关系如何,请说明理由;
(2)在(1)中,如图②,连接FC,取FC的中点H,连接GH、EH,请你探索线段GH和线段EH的大小关系,并说明你的理由;
(3)如图③,分别在AD、BC上取点F、C’,使得∠APF=∠BPC’,与(1)中的操作相类似,即将△PAF沿PF翻折得到△PFG,并将△沿翻折得到△,连接,取的中点H,连接GH、EH,试问(2)中的结论还成立吗?请说明理由.
已知:如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为4,AB=8.
(1)求OB的长;
(2)求sinA的值.