题目内容
分析:根据锐角三角函数的定义,可在Rt△ACD中解得BD的值,进而求得CD的大小;在Rt△CDE中,利用正弦的定义,即可求得CE的值.
解答:解:在Rt△ABD中,∠BAD=18°,AB=9,
∴BD=AB×tan18°≈2.92m,
∴CD=BD-BC=2.92-0.5=2.42m,
在Rt△CDE中,∠CDE=72°,CD≈2.42m,
∴CE=CD×sin72°≈2.3m.
答:CE的高为2.3m.
∴BD=AB×tan18°≈2.92m,
∴CD=BD-BC=2.92-0.5=2.42m,
在Rt△CDE中,∠CDE=72°,CD≈2.42m,
∴CE=CD×sin72°≈2.3m.
答:CE的高为2.3m.
点评:本题通过坡度的定义与应用考查解直角三角形的能力.
练习册系列答案
相关题目