题目内容
如果二次三项式是一个完全平方式,那么的值是_______________.
如图直角坐标系中,矩形ABCD的边BC在x轴上,点B、D的坐标分别为B(1,0),D(3,3).
(1)点C的坐标 ;
(2)若反比例函数的图象经过直线AC上的点E,且点E的坐标为(2,m),求m的值及反比例函数的解析式;
(3)若(2)中的反比例函数的图象与CD相交于点F,连接EF,在直线AB上找一点P,使得,求点P的坐标.
对于任意有理数a,b,现用“☆”定义一种运算:a☆b=a2﹣b2,根据这个定义,代数式(x+y)☆y可以化简为( )
A. xy+y2 B. xy﹣y2 C. x2+2xy D. x2
一元二次方程有两个相等的实数根,则等于 ( )
A. B. 1 C. 或1 D. 2
已知方程的两根是;则:_______, _______。
如图,将长方形ABCD沿着对角线BD折叠,使点C落在处,交AD于点E.
(1)试判断△BDE的形状,并说明理由;
(2)若,,求△BDE的面积.
如图在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3 cm,那么=_________。
【问题情境】
如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.
【探究展示】
(1)证明:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.
【拓展延伸】
(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.
如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()
A. 4S1 B. 4S2 C. 4S2+S3 D. 3S1+4S3