题目内容
(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;
(2)已知⊙O为△ABC的外接圆.若⊙P与⊙O相切,求t的值.
分析:(1)根据已知求出AB=10cm,进而得出△PBD∽△ABC,利用相似三角形的性质得出圆心P到直线AB的距离等于⊙P的半径,即可得出直线AB与⊙P相切;
(2)根据BO=
AB=5cm,得出⊙P与⊙O只能内切,进而求出⊙P与⊙O相切时,t的值.
(2)根据BO=
| 1 |
| 2 |
解答:
解:(1)直线AB与⊙P相切,
如图,过P作PD⊥AB,垂足为D,
在Rt△ABC中,∠ACB=90°,
∵AC=6cm,BC=8cm,
∴AB=10cm,
∵P为BC中点,
∴PB=4cm,
∵∠PDB=∠ACB=90°,
∠PBD=∠ABC,
∴△PBD∽△ABC,
∴
=
,
即
=
,
∴PD=2.4(cm),
当t=1.2时,PQ=2t=2.4(cm),
∴PD=PQ,即圆心P到直线AB的距离等于⊙P的半径,
∴直线AB与⊙P相切;
(2)∵∠ACB=90°,
∴AB为△ABC的外接圆的直径,
∴BO=
AB=5cm,
连接OP,
∵P为BC中点,PO为△ABC的中位线,
∴PO=
AC=3cm,
∵点P在⊙O内部,
∴⊙P与⊙O只能内切,
∴当⊙P在⊙O内部时:5-2t=3,
当⊙O在⊙P内部时2t-5=3,
∴t=1或4,
∴⊙P与⊙O相切时,t的值为1或4.
如图,过P作PD⊥AB,垂足为D,
在Rt△ABC中,∠ACB=90°,
∵AC=6cm,BC=8cm,
∴AB=10cm,
∵P为BC中点,
∴PB=4cm,
∵∠PDB=∠ACB=90°,
∠PBD=∠ABC,
∴△PBD∽△ABC,
∴
| PD |
| AC |
| PB |
| AB |
即
| PD |
| 6 |
| 4 |
| 10 |
∴PD=2.4(cm),
当t=1.2时,PQ=2t=2.4(cm),
∴PD=PQ,即圆心P到直线AB的距离等于⊙P的半径,
∴直线AB与⊙P相切;
(2)∵∠ACB=90°,
∴AB为△ABC的外接圆的直径,
∴BO=
| 1 |
| 2 |
连接OP,
∵P为BC中点,PO为△ABC的中位线,
∴PO=
| 1 |
| 2 |
∵点P在⊙O内部,
∴⊙P与⊙O只能内切,
∴当⊙P在⊙O内部时:5-2t=3,
当⊙O在⊙P内部时2t-5=3,
∴t=1或4,
∴⊙P与⊙O相切时,t的值为1或4.
点评:此题主要考查了相似三角形的性质与判定以及直线与圆的位置关系和圆与圆的位置关系,正确判定直线与圆的位置关系是重点知识同学们应重点复习.
练习册系列答案
相关题目