题目内容

如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB上一点,作∠CDE=∠A,过点C作CE⊥CD交DE于E,连接BE.
(1)求证:数学公式
(2)求证:AB⊥BE.

证明:(1)∵CE⊥CD,
∴∠DCE=∠ACB=90°
又∵∠CDE=∠A
∴△DCE∽△ACB,


(2)∵

∵∠DCE=∠ACB=90°,
∴∠BCE=∠ACD,
∴△BCE∽△ACD,
∴∠CBE=∠A,
∵∠A+∠ABC=90°,
∴∠CBE+∠ABC=90°,
∴∠ABE=90°,
∴AB⊥BE.
分析:(1)利用两组角对应相等的两个三角形相似,得到△DCE∽△ACB,再根据相似三角形的性质即可得到结论;
(2)根据相似三角形的判定,得到△BCE∽△ACD,根据已知及相似三角形的对应角相等,即可求得结论.
点评:此题主要考查相似三角形的判定及性质的综合运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网