题目内容
如图,在△ABC中,∠CAB=90°,∠B<∠C,AD、AE、AF分别是△ABC的高、角平分线、中线.则∠DAE与∠FAE的大小关系是
- A.∠DAE>∠FAE
- B.∠DAE=∠FAE
- C.∠DAE<∠FAE
- D.与∠C的度数有关,无法判断
B
分析:根据题意可知BF=CF,由AF为BC的中线,可得AF=BF=CF,由AD⊥BC,AF=BF=CF,可知,∠C=∠BAD=∠FAC,结合AE为角平分线,即可推出∠FAE=∠DAE.
解答:∵直角三角形ABC中,AF为BC的中线,
∴BF=CF,AF=
BC,
∴AF=BF=CF,
∵∠BAC=90°,AD⊥BC,
∴∠C=∠BAD,
∵AF=BF=CF,
∴∠C=∠BAD=∠FAC,
∵AE为角平分线,
∴∠BAE=∠EAC,
∴∠FAE=∠DAE.
故选:B.
点评:本题主要考查直角三角形斜边上的中线的性质,角平分线的性质、垂线的性质,关键在于根据题意证明AF=BF=CF,推出∠C=∠BAD=∠FAC.
分析:根据题意可知BF=CF,由AF为BC的中线,可得AF=BF=CF,由AD⊥BC,AF=BF=CF,可知,∠C=∠BAD=∠FAC,结合AE为角平分线,即可推出∠FAE=∠DAE.
解答:∵直角三角形ABC中,AF为BC的中线,
∴BF=CF,AF=
∴AF=BF=CF,
∵∠BAC=90°,AD⊥BC,
∴∠C=∠BAD,
∵AF=BF=CF,
∴∠C=∠BAD=∠FAC,
∵AE为角平分线,
∴∠BAE=∠EAC,
∴∠FAE=∠DAE.
故选:B.
点评:本题主要考查直角三角形斜边上的中线的性质,角平分线的性质、垂线的性质,关键在于根据题意证明AF=BF=CF,推出∠C=∠BAD=∠FAC.
练习册系列答案
相关题目