题目内容
若式子在实数范围内有意义,则x的取值范围是 .
如图,已知二次函数L1:y=ax2-2ax+a+3(a>0)和二次函数L2:y=-a(x+1)2+1(a>0)图像的顶点分别为M,N,与y轴分别交于点E,F.
(1)函数y=ax2-2ax+a+3(a>0)的最小值为 ;当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是 ;
(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明);
(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程-a(x+1)2+1=0的解.
分解因式: .
如图,△ABC中,CD是边AB上的高,且.
(1)求证:△ACD∽△CBD;
(2)求∠ACB的大小.
在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是( , ).
如图所示,△ABC中,DE∥BC,若,则下列结论中正确的是( )
A. B.
C. D.
(2014上海)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.
(1)求证:四边形ACED是平行四边形;
(2)连接AE,交BD于点G.求证:.
(2014四川绵阳)如图,AB是半圆O的直径,C是半圆O上的一点,OQ⊥BC于点Q,过点B作半圆O的切线,交OQ的延长线于点P,PA交半圆O于R,则下列等式中正确的是( )
A. B. C. D.
如图所示,学校操场上有一旗杆AB,甲在操场上的C处直立一根3米高的竹竿CD,甲从C处退后3米到达E处,恰好看到竹竿的顶端D与旗杆的顶端B重合,甲的眼睛到地面的距离FE为1.5米,身高相同的乙在C1处也直立一根3米高的竹竿C1D1,乙从C1处退后4米到达E1处,恰好看到竹竿的顶端D1与旗杆的顶端B也重合(点A,C,E,C1,E1在同一条直线上),量得EE1=6米,求旗杆AB的高.