题目内容
已知一次函数y=
(k为正整数)的图象与x轴、y轴的交点是Ak、Bk,O为坐标原点,设Rt△AkBkO的面积是Sk,求S1+S2+…+S2006的值.
解:由题意,令x=0,y=
,
∴Bk(0,
),
令y=0,x=
,
∴Ak(
,0),
∴Sk=
,
∴S1+S2+…+S2006=
=
=
=
.
分析:先分别令x=0求出y的值,再令y=0求出x的值,由三角形的面积公式可得出Sk的表达式,在分别把k=1,2,3…2006代入,求出S1+S2+…+S2006的值即可.
点评:本题考查的是一次函数图象上点的坐标特点及三角形的面积公式,属规律性题目,难度较大.
∴Bk(0,
令y=0,x=
∴Ak(
∴Sk=
∴S1+S2+…+S2006=
=
分析:先分别令x=0求出y的值,再令y=0求出x的值,由三角形的面积公式可得出Sk的表达式,在分别把k=1,2,3…2006代入,求出S1+S2+…+S2006的值即可.
点评:本题考查的是一次函数图象上点的坐标特点及三角形的面积公式,属规律性题目,难度较大.
练习册系列答案
相关题目