题目内容
17
17
.分析:由0B、OC为△ABC的角平分线,DE∥BC交AB、AC于D、E,易得△BOD与△COE是等腰三角形,继而可得DE=BD+EC;易得AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=15,继而求得答案.
解答:解::∵0B、OC为△ABC的角平分线,
∴∠ABO=∠OBC,∠ACO=∠BCO,
∵DE∥BC,
∴∠DOB=∠OBC,∠EOC=∠OCB,
∴∠ABO=∠DOB,∠ACO=∠EOC,
∴BD=OD,EC=OE,
∴DE=OD+OE=BD+EC;
∵△ADE的周长为12,
∴AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=12,
∵BC=7,
∴△ABC的周长为:AB+AC+BC=12+5=17.
故答案为:17.
∴∠ABO=∠OBC,∠ACO=∠BCO,
∵DE∥BC,
∴∠DOB=∠OBC,∠EOC=∠OCB,
∴∠ABO=∠DOB,∠ACO=∠EOC,
∴BD=OD,EC=OE,
∴DE=OD+OE=BD+EC;
∵△ADE的周长为12,
∴AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=12,
∵BC=7,
∴△ABC的周长为:AB+AC+BC=12+5=17.
故答案为:17.
点评:本题考查了等腰三角形的判定与性质.此题难度适中,注意掌握转化思想与数形结合思想的应用.
练习册系列答案
相关题目