题目内容

已知二次函数的图象与y轴的交点坐标为(0,a),与x轴的交点坐标为(b,0)和(-b,0),若a>0,则函数解析式为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:根据函数图象与x轴的交点坐标为(b,0)和(-b,0),设出函数的两点式:y=m(x+b)(x-b),再根据二次函数的图象与y轴的交点坐标为(0,a),把点代入函数的解析式求出a值,从而求出函数的解析式.
解答:∵函数与x轴的交点坐标为(b,0)和(-b,0),
∴可设函数的解析式为:y=m(x+b)(x-b),
又∵二次函数的图象与y轴的交点坐标为(0,a),
∴a=m×b×(-b),
∴m=-
∴函数的解析式为:y=-(x2-b2)=-x2+a;
故选B.
点评:此题考查二次函数的性质及用待定系数法求函数的解析式,注意根据题意设出函数的两点式是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网