题目内容

用指定的方法解方程:
(1)x2-2x=0(因式分解法)             
(2)x2-2x-3=0(用配方法)
(3)2x2-9x+8=0(用公式法)         
(4)(x-2)2=(2x+3)2(用合适的方法)
分析:(1)利用因式分解法解一元二次方程,提取公因式即可;
(2)根据配方法步骤进行配方,得出(x-1)2=4,再开平方即可;
(3)首先求出b2-4ac=81-4×2×8=17>0再套用公式x=
-b±
b2-4ac
2a
=
17
4
,得出即可;
(4)利用平方差公式分解因式即可得出方程的根.
解答:解:(1)x2-2x=0(因式分解法),
∵x2-2x=0,
x(x-2)=0,
∴x1=0,x2=2;

(2)x2-2x-3=0(用配方法)
∵x2-2x-3=0,
x2-2x=3,
x2-2x+1=4,
(x-1)2=4,
∴x-1=±2,
∴x1=3,x2=-1;

(3)2x2-9x+8=0(用公式法),
∵b2-4ac=81-4×2×8=17>0
∴x=
-b±
b2-4ac
2a
=
17
4

∴x1=
9+
17
4
,x2=
9-
17
4


(4)(x-2)2=(2x+3)2(用合适的方法)
解:(x-2)2-(2x+3)2=0,
∴[(x-2)+(2x+3)][(x-2)-(2x+3]=0,
∴(3x+1)(-x-5)=0,
∴x1=-
1
3
,x2=-5.
点评:此题主要考查了一元二次方程的解法,熟练地掌握一元二次方程的解法特别是因式分解法解一元二次方程,可以大大降低计算量.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网