题目内容
17.(1)先化简,再求值:($\frac{1}{x-1}$-x+1)÷$\frac{2x-4}{1-x}$,其中x=$\frac{3}{2}$(2)解分式方程:$\frac{28}{\frac{4}{3}x}$-$\frac{15.6}{x}$=6.
分析 (1)先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可;
(2)先去分母,求出x的值,再进行检验即可.
解答 解:(1)原式=$\frac{1-{(x-1)}^{2}}{x-1}$•$\frac{1-x}{2(x-2)}$
=$\frac{1-{x}^{2}+2x-1}{x-1}$•$\frac{1-x}{2(x-2)}$
=$\frac{-{x}^{2}+2x}{x-1}$•$\frac{1-x}{2(x-2)}$
=$\frac{-x(x-2)}{x-1}$•$\frac{-(x-1)}{2(x-2)}$
=$\frac{x}{2}$,
当x=$\frac{3}{2}$时,原式=$\frac{3}{4}$;
(2)方程两边同时乘以$\frac{4}{3}$x得,28-15.6×$\frac{4}{3}$=6×$\frac{4}{3}$x,
整理得,28-20.8=8x,解得x=0.9.
经检验,x=0.9是原分式方程的解.
点评 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
练习册系列答案
相关题目
8.方程组$\left\{\begin{array}{l}{2x-y=5}\\{x-2y=1}\end{array}\right.$的解是( )
| A. | $\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$ |
5.下列说法正确的是( )
| A. | $\frac{t}{2}$不是整式 | B. | -2x2y与y2x是同类项 | ||
| C. | $\frac{1}{y}$是单项式 | D. | -3x2y的次数是4 |
12.若一组数据5,-3,x,0,-1的极差是11,那么x的值为( )
| A. | -6 | B. | 8 | C. | 16 | D. | -6或8 |