题目内容

如图,点P是反比例函数的图象上的任意一点,过点P分别作两坐标轴的垂线,与坐标轴构成矩形OAPB,点D是矩形OAPB内任意一点,连接DA、DB、DP、DO,则图中阴影部分的面积是( )
A.1
B.2
C.3
D.4
【答案】分析:首先根据查反比例系数k的几何意义,可知矩形OAPB的面积=6,然后根据题意,得出图中阴影部分的面积是矩形OAPB的面积的一半,从而求出结果.
解答:解:∵P是反比例函数的图象的任意点,过点P分别做两坐标轴的垂线,
∴与坐标轴构成矩形OAPB的面积=6.
∴阴影部分的面积=×矩形OAPB的面积=3.
故选C.
点评:本题主要考查反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于|k|.该知识点是中考的重要考点,同学们应高度关注.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网