题目内容
下图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=____.
如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为( )
A. B. C. D.
现有四张分别标有数字1,2,3,4的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽出的卡片所标数字不同的概率是 .
阅读下列材料:
2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次,其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为28万人次、21.75万人次;颐和园、天坛公园、公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.
2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013年清明小长假增长了25%;颐和园游客接待量为26.2万人次,比2013年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.
2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次,13万人次、14.9万人次.
根据以上材料解答下列问题:
(1)2014年清明小长假,玉渊潭公园游客接待量为____万人次;
(2)选择统计表或统计图,将2013-2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.
计算:.
某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )
A.12,21 B.21,21.5 C.21,22 D.22,22
阅读理解:
学习了三角形全等的判定方法:“SAS”,“ASA”,“AAS”,“SSS”和直角三角形全等的判定方法“HL”后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”即“SSA”的情形进行研究.
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠A=∠D.
初步探究:
如图1,已知AC=DF, ∠A=∠D,过C作CH⊥射线AM于点H,对△ABC 的CB边进行分类,可分为“CB<CH,CB=CH,CH<CB<CA,”三种情况进行探究.
深入探究:
第一种情况,当BC<CH时,不能构成△ABC和△DEF.
第二种情况,(1)如图2,当BC=CH时,在△ABC和△DEF中,AC=DF,BC=EF,∠A=∠D,根据 ,可以知道Rt△ABC≌Rt△DEF.
第三种情况,(2)当CH<BC<CA时,△ABC和△DEF不一定全等.请你用尺规在图1的两个图形中分别补全△ABC和△DEF,使△DEF和△ABC不全等(表明字母,不写作法,保留作图痕迹).
(3)从上述三种情况发现,只有当BC=CH时,才一定能使△ABC≌△DEF.除了上述三种情况外,BC边还可以满足什么条件,也一定能使△ABC≌△DEF?写出结论,并利用备用图证明.
分解因式x3-9x=__________.
(本题满分12分)如图,若二次函数的图像过点A(-1,0),C(0,),与x轴的另一交点为B,D为顶点.
(1)求m、n的值及B、D两点的坐标;
(2)若二次函数的图像的对称轴与x轴的交点为P,在线段BC上找一点Q,使得以点B、P、Q为顶点的三角形与△ABC相似,请求出所有符合条件的点Q坐标;
(3)将△ABC沿x轴向右平移t个单位长度(0<t<6),设平移后的△ABC与△PBD重叠的面积为S,请直接写出S 与t的函数关系式.