题目内容

如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10.
(1)当折痕的另一端F在AB边上时,如图.求△EFG的面积;
(2)当折痕的另一端F在AD边上时,如图.证明四边形BGEF为菱形,并求出折痕GF的长.

【答案】分析:根据轴对称的性质,折叠前后图形的形状和大小不变和矩形的性质及直角三角形的性质,同角的余角相等,相似三角形的判定和性质,平行四边形和菱形的判定和性质求解.
解答:解:(1)过点G作GH⊥AD,则四边形ABGH为矩形,
∴GH=AB=8,AH=BG=10,由图形的折叠可知△BFG≌△EFG,
∴EG=BG=10,∠FEG=∠B=90°;
∴EH=6,AE=4,∠AEF+∠HEG=90°,
∵∠AEF+∠AFE=90°,
∴∠HEG=∠AFE,
又∵∠EHG=∠A=90°,
∴△EAF∽△GHE,

∴EF=5,
∴S△EFG=EF•EG=×5×10=25.

(2)由图形的折叠可知四边形ABGF≌四边形HEGF,
∴BG=EG,AB=EH,∠BGF=∠EGF,
∵EF∥BG,
∴∠BGF=∠EFG,
∴EF=EG,
∴BG=EF,
∴四边形BGEF为平行四边形,
又∵EF=EG,
∴平行四边形BGEF为菱形;
连接BE,
BE,FG互相垂直平分,
在Rt△EFH中,
EF=BG=10,EH=AB=8,
由勾股定理可得FH=AF=6,
∴AE=AF+EF=16,
∴BE==8
∴BO=4
∴OG==2
∵四边形BGEF是菱形,
∴FG=2OG=4
答:折痕GF的长是4
点评:本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称变化,对应边和对应角相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网