题目内容
如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为_____.
如图(1),E是直线AB、CD内部一点,AB∥CD,连接EA、ED.
(1)探究:
①若∠A=30°,∠D=40°,则∠AED等于多少度?
②若∠A=20°,∠D=60°,则∠AED等于多少度?
③在图(1)中∠AED、∠EAB、∠EDC有什么数量关系,并证明你的结论.
(2)拓展:如图(2),射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的四个区域(不含边界,其中③④位于直线AB的上方),P是位于以上四个区域上点,猜想:∠PEB、∠PFC、∠EPF之间的关系.(不要求证明)
如图直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为( )
A. 115° B. 125° C. 155° D. 165°
从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).
(1)上述操作能验证的等式是 ;(请选择正确的一个)
A、a2﹣2ab+b2=(a﹣b)2
B、a2﹣b2=(a+b)(a﹣b)
C、a2+ab=a(a+b)
(2)应用你从(1)选出的等式,完成下列各题:
①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.
②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).
分解因式:a2b﹣b3.
下列计算中,正确的是( )
A. x3•x2=x4 B. (x+y)(x﹣y)=x2+y2
C. x(x﹣2)=﹣2x+x2 D. 3x3y2÷xy2=3x4
某中学计划组织九年级师生去韶山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:
李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”
小芳:“我们学校八年级师生昨天在这个客运公司租用4辆60座和2辆45座的客车到韶山参观,一天的租金共计5000元.”
小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”
根据以上对话,解答下列问题:
(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?
(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?
甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价20%,乙商品提价60%,调整后两种商品的单价和比原来的单价和提高了50%,则购买调价后的3件甲商品和2件乙商品共需________元.
两条直线相交得到________个角,其中有一个公共顶点,没有公共边的两个角叫做________;而不仅有一个公共顶点,还有一条________的两个角叫做________.