题目内容
如图,直线y=x+b与双曲线y=都经过点A(2,3),直线y=x+b与x轴、y轴分别交于B、C两点.
(1)求直线和双曲线的函数关系式;
(2)求△AOB的面积.
如图,点E为矩形ABCD外一点,AE=DE,连接EB、EC分别与AD相交于点F、G.求证:
(1)△EAB≌△EDC;
(2)∠EFG=∠EGF.
如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2.点P、Q同时从D点出发,以相同的速度分别沿射线DC、射线DA运动.过点Q作AC的垂线段QR,使QR=PQ,联接PR.当点Q到达A时,点P、Q同时停止运动.设PQ=x.△PQR和△ABC重合部分的面积为S.S关于x的函数图像如图2所示(其中0<x≤,<x≤m时,函数的解析式不同)
(1)填空:n的值为___________;
(2)求S关于x的函数关系式,并写出x的取值范围.
某舞蹈队10名队员的年龄如下表所示:
年龄(岁)
13
14
15
16
人数
2
4
3
1
则这10名队员年龄的众数是( )
A.16 B.14 C.4 D.3
如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.
(1)求抛物线的解析式;
(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.
(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.
在一次文艺演出中,各评委对某节目给出的分数是:9.20,9.25,9.10,9.20,9.15,9.20,9.15,这组数据的众数是 .
下列命题是真命题的是( )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.对角线互相垂直的平行四边形是矩形
C.四条边相等的四边形是菱形
D.正方形是轴对称图形,但不是中心对称图形
某同学遇到一道不会做的选择题,在四个选项中有且只有一个是正确的,则他选对的概率是 .
(本题14分)如图,在平面直角坐标系中,O为坐标原点,直线y=-x+4与x轴交于点B,与y轴 交于点A,点C在x轴的负半轴上,并且OC=OB,一动点P在射线AB上运动,连结CP交y轴与点D,连结BD.过B,P,D三点作圆,交y轴与点E,过点E作EF∥x 轴,交圆与点F,连结BF,DF.
(1)求点C的坐标.
(2)若动点P在线段AB上运动,
①求证∠EDB=∠ADP;
②设AP=n,CP=m,求当n为何值时,m的值最小?最小值是多少?
(3)试探究:点P在运动的过程中,当△BDF为直角三角形,并且两条直角边之比为2:1时,请直接写出OD的长 .