题目内容
如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为 .
如图,已知直线l:y=2x,分别过x轴上的点A1(1,0)、A2(2,0)、…、An(n,0),作垂直于x轴的直线交l于点B1、B2、…、Bn,将△OA1B1,四边形A1A2B2B1、…、四边形An﹣1AnBnBn﹣1的面积依次记为S1、S2、…、Sn,则Sn=( )
A.n2 B.2n+1 C.2n D.2n﹣1
先化简,再求值:,其中x=.
如图,已知A、B、C分别是⊙O上的点,∠B=60°,P是直径CD的延长线上的一点,且AP=AC.
(1)求证:AP与⊙O相切;
(2)如果PD=,求AP的长.
化简并求值:4(x+1)2﹣(2x+3)(2x﹣3),其中x=﹣1.
如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于( )
A.110° B.120° C.130° D.140°
周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.
(1)小芳骑车的速度为 km/h,H点坐标 .
(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?
(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?
化简的结果是( )
A. B. C. D.
如图,小明购买一种笔记本所付款金额y(元)与购买量x(本)之间的函数图象由线段OB和射线BE组成,则一次购买8个笔记本比分8次购买每次购买1个可节省 元.