题目内容
(1)计算:
-
-
+(
-2)0+
;
(2)先化简,再求值:
×
-
,其中x=2
.
| 8 |
|
| ||||
|
| 3 |
(1-
|
(2)先化简,再求值:
| 2x+4 |
| x2-4x+4 |
| x-2 |
| x2+2x |
| 1 |
| x-2 |
| 3 |
分析:(1)首先将各二次根式化简,然后利用二次根式的加减运算求解即可求得答案;
(2)首先利用分式的混合运算法则化简原式,然后将x=2
代入,即可求得答案.
(2)首先利用分式的混合运算法则化简原式,然后将x=2
| 3 |
解答:(1)解:原式=2
-
-(1+
)+1+|1-
|.
=2
-
-1-
+1+
-l.
=
-l.
(2)解:原式=
×
-
=
-
=
=-
,
∴当x=2
时,原式=-
.
| 2 |
| 3 |
| 2 |
| 2 |
| 2 |
| 2 |
=2
| 2 |
| 3 |
| 2 |
| 2 |
| 2 |
| 2 |
=
| 1 |
| 2 |
| 2 |
(2)解:原式=
| 2(x+2) |
| (x-2)2 |
| x-2 |
| x(x+2) |
| 1 |
| x-2 |
=
| 2 |
| x(x-2) |
| x |
| x(x-2) |
=
| 2-x |
| x(x-2) |
=-
| 1 |
| x |
∴当x=2
| 3 |
| ||
| 6 |
点评:此题考查了二次根式的混合运算与分式的化简求值问题.此题难度不大,注意先化简,再求值,注意运算需细心.
练习册系列答案
相关题目