题目内容
(2013•大连)用一个圆心角为90°半径为32cm的扇形作为一个圆锥的侧面(接缝处不重叠),则这个圆锥的底面圆的半径为
8
8
cm.分析:半径为32cm,圆心角为90°的扇形的弧长是
=16π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是16π,设圆锥的底面半径是r,则得到2πr=16π,求出r的值即可.
| 90π×32 |
| 180 |
解答:解:∵
=16π,
圆锥的底面周长等于侧面展开图的扇形弧长,
∴圆锥的底面周长是16πcm,
设圆锥的底面半径是r,
则得到2πr=16π,
解得:r=8(cm).
故答案为:8.
| 90π×32 |
| 180 |
圆锥的底面周长等于侧面展开图的扇形弧长,
∴圆锥的底面周长是16πcm,
设圆锥的底面半径是r,
则得到2πr=16π,
解得:r=8(cm).
故答案为:8.
点评:本题考查了有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:
(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.
(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.
练习册系列答案
相关题目