题目内容
如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.
(1)求证:AE⊥BF;
(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP交BA的延长线于点Q,求sin∠BQP的值;
(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.
![]()
(1)证明:∵E、F分别是正方形ABCD边BC、CD的中点,∴CF=BE,
∵Rt△ABE≌Rt△BCF ∴∠BAE=∠CBF
又∵∠BAE+∠BEA=900,∴∠CBF+∠BEA=900,
∴∠BGE=900, ∴AE⊥BF
(2)根据题意得:FP=FC,∠PFB=∠BFC,∠FPB=900,
∵CD∥AB, ∴∠CFB=∠ABF,∴∠ABF=∠PFB.∴QF=QB
令PF=k(k>O),则PB=2k,
在Rt△BPQ中,设QB=x, ∴x2=(x-k)2+4k2, ∴x=
k,
∴sin∠BQP=
由题意得:∠BAE=∠EAM,又AE⊥BF, ∴AN=AB=2,
∵ ∠AHM=900, ∴GN//HM, .
∴
∴
∴ 四边形GHMN=SΔAHM - SΔAGN=1一
=
所以四边形GHMN的面积是
练习册系列答案
相关题目