题目内容
下列计算正确的是( )
A. a4÷a3=1 B. a4+a3=a7 C. (2a3 )4=8a12 D. a4?a3=a7
如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.
某校春季运动会比赛中,八年级(1)班、(2)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(2)班得分比为6:5;乙同学说:(1)班得分比(2)班得分的2倍少40分.若甲、乙两名同学的说法都正确,设(1)班得x分,(2)班得y分,根据题意所列的方程组应为( )
A. B. C. D.
如图所示,扇形AOB的圆心角为120°,半径为2,则图中阴影部分的面积为_____.
济南大明湖畔的“超然楼”被称作“江北第一楼”,某校数学社团的同学对“超然楼”的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60 m至B处,测得仰角为60°,若学生的身高忽略不计,≈1.7,结果精确到1 m,则该楼的高度CD为( )
A. 47 m B. 51 m C. 53 m D. 54 m
当前,交通拥堵是城市管理的一大难题.我市城东高架桥的开通为分流过境车辆、缓解市内交通压力 起到了关键作用,但为了保证安全,高架桥上最高限速 80 千米/小时.在一般条件下,高架桥上的车流 速度 v(单位:千米/小时)是车流密度 x(单位:辆/千米)的函数,当桥上的车流密度达到 180 辆/千 米时,造成堵塞,此时车流速度为 0;当 0≤x≤20 时,桥上畅通无阻,车流速度都为 80 千米/小时, 研究表明:当 20≤x≤180 时,车流速度 v 是车流密度 x 的一次函数.
(1)当 0≤x≤20 和 20≤x≤180 时,分别写出函数 v 关于 x 的函数关系式;
(2)当车流密度 x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)w=x·v可以达到最大,并求出最大值;
(3)某天早高峰(7:30—9:30)经交警部门控制管理,桥上的车流速度始终保持 40 千米/小时,问这天 早高峰期间高架桥分流了多少辆车?
对于一个函数,如果它的自变量 x 与函数值 y 满足:当?1≤x≤1 时,?1≤y≤1,则称这个函数为“闭 函数”.例如:y=x,y=?x 均是“闭函数”. 已知 y ? ax2 bx c(a?0) 是“闭函数”,且抛物线经过点 A(1,?1)和点 B(?1,1),则 a 的取值范围是______________.
如图,已知四边形ABCD是菱形,点E、F分别是菱形ABCD边AD、CD的中点.
(1)求证:BE=BF;
(2)当△BEF为等边三角形时,求的度数.
小华要画一个有两边长分别为7cm和8cm的等腰三角形,则这个等腰三角形的周长是( )
A. 16cm B. 17cm C. 22cm或23cm D. 11cm