题目内容
如图,在?ABCD中,BC=2AB=4,点E,F分别是BC,AD的中点.
(1)求证:△ABE≌△CDF;
(2)当四边形AECF为菱形时,求出该菱形的面积.
-5的相反数是( )
A. B. C. 5 D. -5
如图,公园内有一个半径为20米的圆形草坪,,是圆上的点,为圆心,,从到只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路.通过计算可知,这些市民其实仅仅少走了__________步(假设1步为0.5米,结果保留整数).(参考数据:,取3.142)
如图,在△ABC中,E是AC边上一点,且AE=AB,∠A=2∠CBE,以AB为直径作⊙O交BE于点F.求证:BC是⊙O的切线.
已知正方形ABCD,E、F分别为边BC、CD上的点,DE=AF.求证:AF⊥DE.
已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF .
计算或化简(1)(—3)0+(+0.2)2009×(+5)2010
(2)2(x+4) (x-4)
如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于点D(6,3),交x轴于点C(12,0).
(1)求直线CD的函数表达式;
(2)动点P在x轴上从点(﹣10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t.
①点P在运动过程中,是否存在某个位置,使得∠PDA=∠B?若存在,请求出点P的坐标;若不存在,请说明理由;
②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.
A. B两地相距36千米.甲从A地出发步行到B地,乙从B地出发步行到A地.两人同时出发,4小时相遇,6小时后 ,甲所余路程为乙所余路程的2倍,求两人的速度. 设甲、乙的速度分别为x千米/小时和y千米/小时,下列方程组正确的是( ).
A.
B.
C.
D.