题目内容

已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.

【答案】分析:要求矩形PNDM的面积,应设DN=x,NP=y,则矩形PNDM的面积为S=xy,再结合已知找出y与x的关系,代入后便可求解.
解答:解:设矩形PNDM的边DN=x,NP=y,
则矩形PNDM的面积S=xy(2≤x≤4),
易知CN=4-x,EM=4-y,
且有(1分),

∴y=-x+5(2分),
S=xy=-x2+5x(2≤x≤4)(3分),
此二次函数的图象开口向下(4分),
对称轴为x=5(5分)
∴当x≤5时,函数值是随x的增大而增大(6分)
对2≤x≤4来说,
当x=4时,S有最大值(7分)
S最大=-×42+5×4=12(8分).
点评:此题综合考查比例线段、二次函数等知识.解决此题的关键在于在AB上找一点P,转变为求PM、PN的值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网