题目内容
某公司营销
两种产品,根据市场调研,发现如下信息:
信息1:销售
种产品所获利润
(万元)与所售产品
(吨)之间存在二次函数关系
.当
时,
;当
时,
.
信息2:销售
种产品所获利润
(万元)与所售产品
(吨)之间存在正比例函数关系
.
根据以上信息,解答下列问题:(1)求二次函数解析式;
(2)该公司准备购进
两种产品共10吨,请设计一个营销方案,使销售
两种产品获得的利润之和最大,最大利润是多少?
【答案】
见解析
【解析】
试题分析:(1)因为当x=1时,y=1.4;当x=3时,y=3.6,代入![]()
得
解得
,所以,二次函数解析式为y=-0.1x2+1.5x;
(2)设购进A产品m吨,购进B产品(10-m)吨,销售A、B两种产品获得的利润之和为W元,根据题意可列函数关系式为:W=-0.1m2+1.5m+0.3(10-m)=-0.1m2+1.2m+3=-0.1(m-6)2+6.6,因为-0.1<0,根据二次函数的性质知当m=6时,W有最大值6.6,
试题解析:(1)∵当x=1时,y=1.4;当x=3时,y=3.6,
∴
解得
,
所以,二次函数解析式为y=-0.1x2+1.5x; 3分
(2)设购进A产品m吨,购进B产品(10-m)吨,销售A、B两种产品获得的利润之和为W元,
则W=-0.1m2+1.5m+0.3(10-m)=-0.1m2+1.2m+3=-0.1(m-6)2+6.6,
∵-0.1<0,
∴当m=6时,W有最大值6.6,
∴购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.
考点:1.待定系数法求解析式.2.二次函数性质.
练习册系列答案
相关题目