题目内容
(2010•绍兴)如图,已知△ABC内接于⊙O,AC是⊙O的直径,D是(1)求证:EF是⊙O的切线;
(2)若EF=8,EC=6,求⊙O的半径.
【答案】分析:(1)要证EF是⊙O的切线,只要连接OD,再证OD⊥EF即可.
(2)先根据勾股定理求出CF的长,再根据相似三角形的判定和性质求出⊙O的半径.
解答:
(1)证明:连接OD交于AB于点G.
∵D是
的中点,OD为半径,
∴AG=BG.(2分)
∵AO=OC,
∴OG是△ABC的中位线.
∴OG∥BC,
即OD∥CE.(2分)
又∵CE⊥EF,
∴OD⊥EF,
∴EF是⊙O的切线.(1分)
(2)解:在Rt△CEF中,CE=6,EF=8,
∴CF=10.(1分)
设半径OC=OD=r,则OF=10-r,
∵OD∥CE,
∴△FOD∽△FCE,
∴
,(2分)
∴
=
,
∴r=
,
即:⊙O的半径为
.(2分)
点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.
(2)先根据勾股定理求出CF的长,再根据相似三角形的判定和性质求出⊙O的半径.
解答:
∵D是
∴AG=BG.(2分)
∵AO=OC,
∴OG是△ABC的中位线.
∴OG∥BC,
即OD∥CE.(2分)
又∵CE⊥EF,
∴OD⊥EF,
∴EF是⊙O的切线.(1分)
(2)解:在Rt△CEF中,CE=6,EF=8,
∴CF=10.(1分)
设半径OC=OD=r,则OF=10-r,
∵OD∥CE,
∴△FOD∽△FCE,
∴
∴
∴r=
即:⊙O的半径为
点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.
练习册系列答案
相关题目