题目内容
如图,过y轴正半轴上一点p,作x轴的平行线,分别与反比例函数
和
的图象交于点A、B,点C是x轴上任意一点,连结AC、BC,则△ABC的面积为
- A.3
- B.4
- C.5
- D.6
A
分析:先设P(0,b),由直线AB∥x轴,则A,B两点的纵坐标都为b,而A,B分别在反比例函数
和
的图象上,可得到A点坐标为(-
,b),B点坐标为(
,b),从而求出AB的长,然后根据三角形的面积公式计算即可.
解答:设P(0,b),
∵直线AB∥x轴,
∴A,B两点的纵坐标都为b,而点A在反比例函数y=-
的图象上,
∴当y=b,x=-
,即A点坐标为(-
,b),又∵点B在反比例函数
的图象上,
∴当y=b,x=
,即B点坐标为(
,b),
∴AB=
-(-
)=
,
∴S△ABC=
•AB•OP=
•
•b=
.
故选:A.
点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.
分析:先设P(0,b),由直线AB∥x轴,则A,B两点的纵坐标都为b,而A,B分别在反比例函数
解答:设P(0,b),
∵直线AB∥x轴,
∴A,B两点的纵坐标都为b,而点A在反比例函数y=-
∴当y=b,x=-
∴当y=b,x=
∴AB=
∴S△ABC=
故选:A.
点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.
练习册系列答案
相关题目